
- 2025-01-10 10:50:46植物表型成像分析
- 植物表型成像分析是一種利用成像技術(shù)和圖像分析算法對(duì)植物表型特征進(jìn)行定量描述和解析的方法。該技術(shù)通過獲取植物的高分辨率圖像,提取植物的形態(tài)、顏色、紋理等表型信息,進(jìn)而分析植物的生長狀況、生理狀態(tài)及遺傳變異等。植物表型成像分析在植物科學(xué)研究、作物育種、農(nóng)業(yè)生產(chǎn)等領(lǐng)域具有廣泛應(yīng)用前景,有助于推動(dòng)植物科學(xué)的快速發(fā)展。
資源:16354個(gè) 瀏覽:21次展開
植物表型成像分析相關(guān)內(nèi)容
植物表型成像分析資訊
-
- PlantScreen SC高通量植物表型成像分析系統(tǒng)助力園藝植物新品種選育
- 日前,由北京易科泰生態(tài)技術(shù)有限公司提供的PlantScreen SC高通量植物表型成像分析系統(tǒng)在金陵科技學(xué)院安裝運(yùn)行。
-
- PhenoTron?PTS植物表型成像分析系統(tǒng)落戶中國農(nóng)科院成都中心
- 得益于PhenoTron? PTS系統(tǒng)一站式成像及多元信息融合分析優(yōu)勢(shì),葉片不同部位的差異也得到直觀展現(xiàn),表明了該系統(tǒng)在作物表型、植物生理生態(tài)、種質(zhì)資源等領(lǐng)域具有巨大的應(yīng)用潛力。
-
- PlantScreen高通量植物表型成像分析平臺(tái)在 中科院東北地理與農(nóng)業(yè)生態(tài)研究所投入運(yùn)行
- 近日,北京易科泰生態(tài)技術(shù)有限公司提供的PlantScreen高通量植物表型成像分析平臺(tái)在中科院東北地理與農(nóng)業(yè)生態(tài)研究所東北亞種質(zhì)資源綜合研究中心安裝完成并完成系統(tǒng)培訓(xùn),系統(tǒng)正式投入使用。
-
- 易科泰植物黃酮活體成像技術(shù)驚艷2024第五屆植物代謝國際會(huì)議
- 第五屆植物代謝國際會(huì)議于2024年11月21日至25日在中國海南省三亞市隆重舉行。
-
- PlantScreen植物表型成像分析技術(shù)助力科研設(shè)備以舊換新
- 隨著基因組學(xué)研究的發(fā)展,與之對(duì)應(yīng)的表型組學(xué)研究從21世紀(jì)10年代初逐漸成為生物學(xué)研究的熱點(diǎn)之一。
植物表型成像分析文章
植物表型成像分析產(chǎn)品
產(chǎn)品名稱
所在地
價(jià)格
供應(yīng)商
咨詢
- PhenoTron? PTS植物表型成像分析系統(tǒng)
- 國內(nèi) 北京
- 面議
-
北京易科泰生態(tài)技術(shù)有限公司
售全國
- 我要詢價(jià) 聯(lián)系方式
- PhenoTron?-XYZ高通量植物表型成像分析系統(tǒng)
- 國內(nèi) 北京
- 面議
-
北京易科泰生態(tài)技術(shù)有限公司
售全國
- 我要詢價(jià) 聯(lián)系方式
植物表型成像分析問答
- 2023-05-26 10:03:56PhenoTron?-XYZ植物表型成像分析系統(tǒng)
- PhenoTron?-XYZ植物表型成像分析系統(tǒng),是易科泰生態(tài)技術(shù)公司基于國際先進(jìn)光譜成像傳感器技術(shù)和自主研發(fā)的XYZ植物表型自動(dòng)掃描平臺(tái),設(shè)計(jì)生產(chǎn)的一款適用于實(shí)驗(yàn)室或溫室高通量植物表型分析系統(tǒng):國際知名高光譜成像技術(shù)公司Specim(芬蘭)高光譜成像傳感器Thermo-RGB?紅外熱成像與可見光成像融合分析技術(shù),可實(shí)現(xiàn)遙控和在線圖傳FluorCam葉綠素?zé)晒獬上窦夹g(shù)平臺(tái)采用STP(Sensor-To-Plant)技術(shù)和在線視覺監(jiān)控可選配基于蒸滲儀技術(shù)的iPOT數(shù)字化培養(yǎng)盆,全面監(jiān)測(cè)重量變化、土壤水分與溫度,及葉片溫度、葉綠素?zé)晒狻⑶o流、光合作用等生理生態(tài)參數(shù)可選配臺(tái)面式表型分析平臺(tái),XYZ安裝在樣品平臺(tái)上,特別適合實(shí)驗(yàn)室組培苗和種苗表型分析、種質(zhì)資源檢測(cè)等應(yīng)用于種苗與組培苗表型檢測(cè)、作物表型研究分析、植物生理生態(tài)研究、光合生理研究、種質(zhì)資源檢測(cè)、脅迫與抗性評(píng)估與篩選等 自左至右依次為:PhenoTron?-XYZ植物表型成像分析系統(tǒng)(可移動(dòng))、臺(tái)面式PhenoTron?-XYZ植物表型成像分析系統(tǒng)、綠豆種苗高光譜成像分析(PRI)主要技術(shù)指標(biāo):1)平臺(tái)采用STP技術(shù),嵌入式主控系統(tǒng),全中文操作界面,觸控屏+PC端GUI軟件雙重控制,可無線控制2)XYZ三軸全自動(dòng)運(yùn)行,精 準(zhǔn)定位掃描成像分析,運(yùn)行精度1mm3)支持組合命令,可自定義Protocols,自動(dòng)執(zhí)行XYZ三軸移動(dòng)、停止、光源開閉、快門觸發(fā)等4)支持位置記憶,可一鍵注冊(cè)、記錄、保存、讀取XYZ坐標(biāo)信息,自動(dòng)移動(dòng)精 準(zhǔn)定位采集Thermo-RGB及FluorCam葉綠素?zé)晒獬上駭?shù)據(jù)5)機(jī)器視覺監(jiān)控:監(jiān)控鏡頭經(jīng)過算法校準(zhǔn),在線監(jiān)視全域植物狀態(tài)和自動(dòng)掃描成像,通過注冊(cè)XYZ自動(dòng)定位采集RGB、紅外熱成像、FluorCam葉綠素?zé)晒獬上駭?shù)據(jù),并在線監(jiān)控全過程6)標(biāo)配臺(tái)面式XYZ三軸有效行程:X軸80cm,Y軸有效掃描長度180cm,Z軸可升降范圍30cm7)400-1000nm高光譜成像:a)光譜通道448,具備MROI功能,根據(jù)需求自由選擇感興趣光譜波段,減少數(shù)據(jù)冗余b)幀率:330FPS(滿幀),適應(yīng)多種測(cè)量場(chǎng)景,尤其對(duì)容易擺動(dòng)的植物,保證最 佳的成像效果c)光譜分辨率 FWHM:5.5nmd)空間分辨率:1024像素e)信噪比400:1f)分析參數(shù):可成像測(cè)量分析作物生化、生理指標(biāo)如葉綠素含量、花青素含量、胡蘿卜素含量、光利用效率、葉綠素?zé)晒庵笖?shù)、健康指數(shù)、覆蓋度等近百種參數(shù)8)900-1700nm高光譜成像:a)光譜通道224,具備MROI功能,根據(jù)需求自由選擇感興趣光譜波段,減少數(shù)據(jù)冗余b)幀率:670FPS(滿幀)c)光譜分辨率 FWHM:8nmd)空間分辨率:640像素e)信噪比1000:1f)分析參數(shù):可成像測(cè)量分析NDNI歸一化N指數(shù)、NDWI歸一化水指數(shù)、MSI水分脅迫指數(shù)等9)SpectrAPP?高光譜成像分析軟件:a)具備偽彩色/灰度顯示、波段融合、ROI選區(qū)、光譜指數(shù)分析、光譜曲線繪制、光譜特征統(tǒng)計(jì)、直方圖統(tǒng)計(jì)、結(jié)果圖/表導(dǎo)出等功能b)可分析NDVI、PRI、DCNI、CRI、ARI、PSRI、NPQI、EVI、HI、WBI等數(shù)十種光譜指數(shù),可根據(jù)需求定制添加光譜指數(shù) 左:SpectrAPP?高光譜成像分析,右:綠豆幼苗葉綠素?zé)晒獬上穹治?0)Thermo-RGB成像:a)可見光-紅外熱成像雙鏡頭主機(jī),出廠黑體多點(diǎn)校準(zhǔn)并附校準(zhǔn)證書,分辨率640×512像素b)測(cè)量溫度范圍-25℃-150℃,靈敏度0.03℃@30℃,c)紅外熱成像分析軟件具備調(diào)色板、差值技術(shù)、溫度范圍設(shè)置、等溫線模式、選區(qū)分析、溫度掃描、剖面溫度、時(shí)間圖、3D溫度圖、在線報(bào)告等功能d)Thermo-RGB?成像融合分析:可進(jìn)行手動(dòng)/自動(dòng)ROI分析;光照/背光葉片長度、寬度、周長、凸包面積、圓度等形態(tài)分析;最 高、最 低、平均溫度、最 大溫差、中位數(shù)等溫度分析;R/G/B、H/S/V、綠視率等顏色分析,具備溫度直方圖統(tǒng)計(jì)、路勁分析、溫度轉(zhuǎn)換、圖/表導(dǎo)出等功能e) Thermo-RGB遙控并可在線圖像無線傳輸,實(shí)時(shí)監(jiān)測(cè)RGB及紅外熱成像畫面,測(cè)量最 大、最 小、中心點(diǎn)溫度信息等11)葉綠素?zé)晒獬上瘢篴)專業(yè)高靈敏度葉綠素?zé)晒獬上馛CD,幀頻50fps,分辨率720×560像素,像素大小8.6×8.3μmb)3色4組LED激發(fā)光源:620nm脈沖調(diào)制測(cè)量光,620nm紅色、5700K白色雙色光化學(xué)光源,735nm遠(yuǎn)紅光用于測(cè)量Fo’等c)光化學(xué)光最 大1000μmol.m-2. s-1可調(diào),飽和脈沖3900μmol.m-2. s-1d)可自動(dòng)運(yùn)行Fv/Fm、Kautsky誘導(dǎo)效應(yīng)、熒光淬滅分析、光響應(yīng)曲線等protocolse)50多個(gè)葉綠素?zé)晒庾詣?dòng)測(cè)量分析參數(shù),包括:Fv/Fm、Fv’/Fm’、Y(II)、NPQ、qN、qP、Rfd、ETR等,自動(dòng)形成葉綠素?zé)晒鈪?shù)圖f) 自動(dòng)同步顯示葉綠素?zé)晒鈪?shù)及參數(shù)圖、葉綠素?zé)晒鈩?dòng)態(tài)曲線、葉綠素?zé)晒鈪?shù)頻率直方圖g) 可通過注冊(cè)定位自動(dòng)精 準(zhǔn)定位運(yùn)行葉綠素?zé)晒獬上穹治?,單次成像面積35x46mmh)可對(duì)植物葉片、果實(shí)等不同組織進(jìn)行葉綠素?zé)晒獬上穹治鰅) 可選配GFP成像j) 配備便攜支架和葉夾,方便獨(dú)立使用
140人看過
- 2022-12-04 19:40:01高內(nèi)涵應(yīng)用案例——線粒體動(dòng)力學(xué)檢測(cè)和表型分析
- 引言新陳代謝是生物體內(nèi)進(jìn)行的化學(xué)變化的總稱,是生物最基本的生命活動(dòng)過程。細(xì)胞從環(huán)境汲取能量、物質(zhì),在內(nèi)部進(jìn)行各種化學(xué)變化,維持自身高度復(fù)雜的有序結(jié)構(gòu),保證生命活動(dòng)的正常進(jìn)行。作為細(xì)胞的“能量工廠”,線粒體在維持能量穩(wěn)態(tài)方面發(fā)揮重要作用,可以調(diào)控蛋白質(zhì)、脂質(zhì)、溶質(zhì)和代謝物產(chǎn)物的進(jìn)出,并保護(hù)細(xì)胞質(zhì)免受有害線粒體產(chǎn)物的影響。線粒體通過不斷的分裂和融合,維持線粒體形態(tài)、分布和數(shù)量,維持細(xì)胞穩(wěn)態(tài),該過程被稱為線粒體動(dòng)力學(xué)。線粒體自噬是機(jī)體清除細(xì)胞內(nèi)功能異常的線粒體的過程,是線粒體質(zhì)量控制的主要機(jī)制。線粒體動(dòng)力學(xué)的病理改變可導(dǎo)致生物能量功能受損和線粒體介導(dǎo)的細(xì)胞死亡,并與多種病理機(jī)制相關(guān),包括缺血性心肌病,糖尿病,肺動(dòng)脈高壓,帕金森氏病,亨廷頓氏病,骨骼肌萎縮癥、阿爾茨海默病等。線粒體大小和形狀取決于它們?cè)诩?xì)胞內(nèi)的位置以及不同細(xì)胞對(duì)能量的需求。當(dāng)線粒體發(fā)生損傷時(shí),它的形態(tài)和完整性會(huì)發(fā)生改變,如線粒體的數(shù)量、大小、長度和形狀等。線粒體形態(tài)、結(jié)構(gòu)和功能的檢測(cè)對(duì)于了解線粒體的穩(wěn)態(tài)以及功能狀態(tài)有重要意義。高內(nèi)涵成像分析系統(tǒng)非常適合進(jìn)行線粒體表型和結(jié)構(gòu)的研究。共聚焦成像和水鏡可以提高成像質(zhì)量并更好地顯示線粒體結(jié)構(gòu),高內(nèi)涵的圖像分析工具可以幫助科研工作者獲得不同表型的數(shù)字特征,線粒體表型和結(jié)構(gòu)重排的分析模塊可用于線粒體動(dòng)力學(xué)為基礎(chǔ)的細(xì)胞研究。 結(jié)果展示使用不同濃度的化合物,包括氯喹(抑 制線粒體循環(huán)),魚藤酮(氧化磷酸化抑 制劑)和纈氨霉素(鉀離子載體)處理 PC12(人神經(jīng)母細(xì)胞瘤細(xì)胞)。將活細(xì)胞用線粒體染料 MitoTracker Orange 和 Hoechst 進(jìn)行染色,利用 ImageXpress Micro Confocal 系統(tǒng)(Molecular Devices)進(jìn)行成像,使用共聚焦模式和 40X 水鏡拍攝活細(xì)胞的圖像,分辨單個(gè)線粒體并檢測(cè)線粒體形態(tài)變化。使用 MetaXpress 高內(nèi)涵圖像采集和分析軟件中的 Custom Module Editor(自定義模塊編輯器)分析圖像,使用“Granularity”模塊和“Find Fibers”模塊識(shí)別圓形顆粒和細(xì)長的線粒體(圖 1)。圖 1 .線粒體形狀的表型分析。Molecular Devices 高內(nèi)涵成像分析系統(tǒng)適用于各種細(xì)胞模型中化合物的藥物開發(fā)或毒性評(píng)估。不同化合物處理會(huì)導(dǎo)致線粒體形態(tài)變化,膜電位的損失、以及細(xì)胞的程序性死亡等。MetaXpress 軟件非常適合進(jìn)行線粒體形態(tài)的測(cè)定,可以定義每個(gè)對(duì)象的數(shù)量、面積、強(qiáng)度、長度和形狀(表1,2)。使用具有共聚焦模式的 40X 水鏡對(duì)細(xì)胞進(jìn)行成像,MetaXpress 自定義模塊編輯器分析圖像(圖 2)。這些檢測(cè)結(jié)果可以計(jì)算劑量反應(yīng)和各種化合物的有效濃度,以及用數(shù)字來表征線粒體結(jié)構(gòu)動(dòng)力學(xué)(圖 3)。圖 2 .化合物對(duì)線粒體的作用。使用MitoTracker Orange對(duì)線粒體進(jìn)行染色( 黃色 ),對(duì)照組(A)、纈霉素(B)、魚藤酮(C)。使用特定濃度的化合物(氯喹,魚藤酮和纈氨霉素)處理 PC12 細(xì)胞,對(duì)細(xì)胞進(jìn)行染色和成像。通過圖像分析將線粒體結(jié)構(gòu)確定為“纖維”(頂部)或“顆?!保ㄖ胁浚?,底部為線粒體染色后熒光強(qiáng)度的變化。EC50的值取決于四個(gè)濃度依賴性復(fù)本和參數(shù)曲線的擬合(圖 3)。圖 3 .使用氯喹(綠色),魚藤酮(紅色)和纈氨霉素(藍(lán)色)處理 PC12 細(xì)胞。EC50的值取決于四個(gè)濃度依賴性復(fù)本和參數(shù)曲線的擬合。在分析過程中,我們比較了水鏡和空氣鏡對(duì)圖像質(zhì)量和分析的影響。結(jié)果顯示,使用水鏡可以提高圖像質(zhì)量,并且通常會(huì)導(dǎo)致 Z' 值增加( 表 3 )。圖 4 顯示了使用自定義模塊編輯對(duì)線粒體表型進(jìn)行計(jì)數(shù)和分析,以評(píng)估線粒體的健康、代謝、循環(huán)、復(fù)合效應(yīng)和疾病狀態(tài)等。并且,自定義模塊編輯可以針對(duì)特定的細(xì)胞類型或疾病模型進(jìn)行進(jìn)一步的調(diào)整和修改。表 1 .用圖 3 所示的曲線定量 EC50。表 2 .不同的對(duì)照和化合物處理方法的比較。上面四列數(shù)據(jù)分別是對(duì)照,10 um 的氯喹,300 nm 的魚藤酮,和 10 nm 的纈氨酸霉素。表 3 .與空氣鏡相比,水鏡可以提高圖像質(zhì)量,獲得更高的Z’值。 圖 4 .自定義模塊編輯器(CME)。 總結(jié)Molecular Devices 高內(nèi)涵成像分析系統(tǒng)適用于各種細(xì)胞模型中化合物的藥物開發(fā)或毒性評(píng)估。使用高內(nèi)涵成像和高級(jí)圖像分析的線粒體動(dòng)力學(xué)分析方法不僅可以量化線粒體的表型變化,而且這種多參數(shù)方法也可用于研究正常和病理結(jié)構(gòu)變化以表征疾病模型或復(fù)合效應(yīng)。 主要特點(diǎn) 獲得高質(zhì)量的圖像,更好地顯示線粒體形狀和結(jié)構(gòu)的變化以更有效、更精確的方式量化和測(cè)量線粒體的表型變化了解疾病的機(jī)制并評(píng)估各種細(xì)胞模型中的化合物毒性參考文獻(xiàn):[1]. Gottlieb RA, Bernstein D. Mitochondrial remodeling: Rearranging, recycling, and reprogramming. Cell Calcium, 2016, 60(2): 88–101.[2]. Yoon Y, Krueger EW , Oswald BJ , et al. The Mitochondrial Protein hFis1 Regulates Mitochondrial Fission in Mammalian Cells through an Interaction with the Dynamin-Like Protein DLP1. Molecular & Cellular Biology, 2003, 23(15):5409-5420.[3]. McLelland GL, Soubannier V, Chen CX, et al. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. Embo Journal. 2014, 33(4):282-295.[4]. Twig G, Elorza A, Molina AJ, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. Embo Journal. 2008, 27:433–446.[5]. Longo DL , Archer SL . Mitochondrial dynamics--mitochondrial fission and fusion in human diseases. New England Journal of Medicine, 2013, 369(23):2236-2251.[6]. Qi X, Disatnik MH, Shen N, et al. Aberrant mitochondrial fission in neurons induced by protein kinase C{delta} under oxidative stress conditions in vivo. Molecular biology of the cell. 2011, 22(2):256–265.[7]. Yu T, Sheu SS, Robotham JL, Yoon Y. Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovascular Research. 2008, 79:341–351.[8]. Ong SB, Subrayan S, Lim SY, et al. Inhibiting Mitochondrial Fission Protects the Heart Against Ischemia/Reperfusion Injury. Circulation, 121(18), 2012-2022.[9]. Suen DF, Norris KL, Youle RJ. Mitochondrial dynamics and apoptosis. Genes Dev. 2008, 22:1577-590.[10]. Konopka AR, Suer MK, Wolff CA, et al. Markers of Human Skeletal Muscle Mitochondrial Biogenesis and Quality Control: Effects of Age and Aerobic Exercise Training. The Journals of Gerontology. 2014, 69(4):371-378.
257人看過
- 2025-02-17 14:30:16核磁共振成像成像特點(diǎn)是什么?
- 核磁共振成像成像特點(diǎn) 核磁共振成像(MRI)作為一種非侵入性醫(yī)學(xué)成像技術(shù),在現(xiàn)代醫(yī)學(xué)中得到了廣泛應(yīng)用。與傳統(tǒng)的X射線和CT掃描不同,核磁共振成像通過利用強(qiáng)磁場(chǎng)和射頻脈沖,生成高分辨率的內(nèi)部圖像,能夠清晰地呈現(xiàn)身體各個(gè)組織和器官的結(jié)構(gòu)。本文將深入探討核磁共振成像的成像特點(diǎn),并闡明其在臨床應(yīng)用中的優(yōu)勢(shì)。 高分辨率的軟組織成像 核磁共振成像顯著的特點(diǎn)之一是其在軟組織成像方面的優(yōu)越性。傳統(tǒng)的成像技術(shù)如X射線或CT掃描主要依賴于硬組織的密度差異,而MRI則能夠提供軟組織的細(xì)節(jié)圖像。無論是腦組織、肌肉、關(guān)節(jié)還是器官,核磁共振都能提供清晰的圖像,這使得醫(yī)生在診斷時(shí)能夠準(zhǔn)確識(shí)別各種疾病,如腦部腫瘤、脊柱疾病、心血管疾病等。 無輻射危害 與X射線和CT掃描等影像技術(shù)不同,核磁共振成像不會(huì)使用任何形式的電離輻射,這使得其在許多臨床情境下成為一種更加安全的選擇。特別是在需要多次檢查的情況下(如癌癥隨訪或慢性病監(jiān)控),MRI因其零輻射特性而具有明顯的優(yōu)勢(shì)。MRI對(duì)孕婦和兒童等敏感人群更為友好,是其在兒科和產(chǎn)科中應(yīng)用的關(guān)鍵因素之一。 多平面成像能力 核磁共振成像具有獨(dú)特的多平面成像能力,即能夠在不同的平面(如橫截面、冠狀面、矢狀面等)上進(jìn)行成像。這一特點(diǎn)使得MRI能夠從多角度、多方位獲取圖像,極大提高了疾病診斷的精確度和可靠性。通過多平面重建,醫(yī)生可以清晰地了解患者病變區(qū)域的空間關(guān)系,從而進(jìn)行更有效的診斷和。 組織對(duì)比度良好 核磁共振成像提供了較為優(yōu)異的組織對(duì)比度,這使得不同類型的組織在圖像中的分辨更加明顯。例如,腫瘤和正常組織的對(duì)比度非常高,幫助醫(yī)生識(shí)別腫瘤的邊界和形態(tài)特征。MRI技術(shù)還可以通過使用不同的序列(如T1、T2加權(quán)成像)來突出顯示不同類型的組織結(jié)構(gòu),這對(duì)于臨床中的診斷工作至關(guān)重要。 動(dòng)態(tài)成像和功能性成像 隨著技術(shù)的不斷發(fā)展,MRI不僅能夠提供靜態(tài)的解剖學(xué)圖像,還能夠進(jìn)行動(dòng)態(tài)成像和功能性成像。例如,通過使用功能性MRI(fMRI)技術(shù),醫(yī)生可以觀察到大腦在執(zhí)行特定任務(wù)時(shí)的活動(dòng)情況,這對(duì)于神經(jīng)科學(xué)的研究和疾病的診斷具有重要意義。MRI還可以通過動(dòng)態(tài)對(duì)比增強(qiáng)成像(DCE-MRI)評(píng)估腫瘤的血流情況,進(jìn)一步提高腫瘤的評(píng)估精度。 總結(jié) 核磁共振成像憑借其高分辨率軟組織成像、無輻射危害、多平面成像能力、優(yōu)異的組織對(duì)比度以及動(dòng)態(tài)成像和功能性成像等特點(diǎn),已成為醫(yī)學(xué)影像學(xué)領(lǐng)域中不可或缺的重要技術(shù)。隨著技術(shù)的不斷進(jìn)步,MRI將繼續(xù)在疾病診斷和中發(fā)揮著越來越重要的作用,尤其在軟組織成像和復(fù)雜疾病的早期發(fā)現(xiàn)中具有不可替代的優(yōu)勢(shì)。 這篇文章結(jié)構(gòu)緊湊,內(nèi)容詳實(shí),使用了相關(guān)的SEO關(guān)鍵詞,適合于優(yōu)化網(wǎng)站排名。如果您有任何特定要求或修改意見,可以告訴我,我會(huì)根據(jù)您的需要進(jìn)一步調(diào)整。
27人看過
- 2025-05-19 11:15:18透射電子顯微鏡怎么成像
- 透射電子顯微鏡(Transmission Electron Microscope, TEM)作為現(xiàn)代科學(xué)研究中的一項(xiàng)重要工具,廣泛應(yīng)用于材料科學(xué)、生物學(xué)、化學(xué)等領(lǐng)域。它的工作原理和成像技術(shù)為我們揭示了物質(zhì)的微觀結(jié)構(gòu),尤其是能夠深入到納米級(jí)別,觀察細(xì)胞內(nèi)部的精細(xì)結(jié)構(gòu)以及各類材料的晶體結(jié)構(gòu)。本文將詳細(xì)介紹透射電子顯微鏡如何進(jìn)行成像,探討其成像原理、過程及其優(yōu)勢(shì),為理解其在科研中的重要作用提供清晰的視角。 透射電子顯微鏡的成像原理 透射電子顯微鏡通過利用電子束與樣品的相互作用進(jìn)行成像。與傳統(tǒng)光學(xué)顯微鏡不同,透射電子顯微鏡使用高能電子束而非光線,因?yàn)殡娮硬ㄩL遠(yuǎn)小于可見光,從而能夠觀察到比光學(xué)顯微鏡更為細(xì)微的物質(zhì)結(jié)構(gòu)。當(dāng)電子束通過樣品時(shí),部分電子被樣品中的原子散射或透過,另一部分則未受影響。通過檢測(cè)這些不同的電子束,電子顯微鏡能夠繪制出樣品的詳細(xì)影像。 成像過程 電子束的生成與聚焦 透射電子顯微鏡的電子束通常由一個(gè)加速器產(chǎn)生并通過電磁透鏡聚焦成極細(xì)的電子束。加速后的電子束具有極高的能量,可以穿透很薄的樣品。 樣品的制備 樣品必須足夠薄,以便電子束能夠透過。一般來說,樣品的厚度需要控制在100nm以下,這樣電子才能順利通過并獲得清晰的成像。 與樣品的相互作用 當(dāng)電子束與樣品的原子發(fā)生相互作用時(shí),部分電子會(huì)被散射,部分則通過樣品。這些散射電子和透過電子的不同程度為成像提供了信息。 成像與放大 整個(gè)透射過程通過一系列的透鏡系統(tǒng),將透過樣品的電子聚焦到熒光屏或相機(jī)上,從而形成樣品的高分辨率圖像。不同的電子透過樣品的路徑、散射程度以及強(qiáng)度變化構(gòu)成了圖像的細(xì)節(jié)。 透射電子顯微鏡的優(yōu)勢(shì) 高分辨率 透射電子顯微鏡的大優(yōu)勢(shì)在于其超高的分辨率,能夠觀察到原子級(jí)別的細(xì)節(jié)。由于電子的波長比可見光波長短,它能揭示光學(xué)顯微鏡無法捕捉到的微觀結(jié)構(gòu)。 納米尺度觀察 TEM不僅能夠看到納米尺度的細(xì)節(jié),還是觀察材料、細(xì)胞、病毒等微觀結(jié)構(gòu)的首選工具,廣泛應(yīng)用于科學(xué)研究及臨床診斷中。 多功能性 除了成像,透射電子顯微鏡還可以進(jìn)行化學(xué)成分分析(如電子能量損失譜、X射線能譜等),進(jìn)一步提高了其應(yīng)用的廣泛性和準(zhǔn)確性。 結(jié)語 透射電子顯微鏡作為現(xiàn)代科研不可或缺的工具,其高分辨率和獨(dú)特的成像原理使其在微觀結(jié)構(gòu)觀察中具有無可替代的地位。無論是在材料科學(xué)還是生物學(xué)領(lǐng)域,TEM為我們提供了觀察微觀世界的新視角和深度,使我們得以深入探索細(xì)胞、材料和納米結(jié)構(gòu)的復(fù)雜性。
23人看過
- 2025-02-18 14:30:11細(xì)胞成像檢測(cè)系統(tǒng)如何操作?
- 細(xì)胞成像檢測(cè)系統(tǒng):革新生命科學(xué)研究的關(guān)鍵工具 細(xì)胞成像檢測(cè)系統(tǒng)是生命科學(xué)領(lǐng)域中的一項(xiàng)重要技術(shù),它廣泛應(yīng)用于細(xì)胞生物學(xué)、醫(yī)學(xué)研究以及藥物開發(fā)等多個(gè)領(lǐng)域。隨著技術(shù)的不斷進(jìn)步,細(xì)胞成像檢測(cè)系統(tǒng)的功能和精度也在不斷提升,使研究人員能夠更深入地觀察細(xì)胞內(nèi)部的動(dòng)態(tài)變化、結(jié)構(gòu)特征以及各種生物學(xué)過程。這些系統(tǒng)不僅幫助科學(xué)家更好地理解細(xì)胞行為,還為疾病的早期診斷和方案的制定提供了強(qiáng)有力的支持。本文將詳細(xì)介紹細(xì)胞成像檢測(cè)系統(tǒng)的工作原理、應(yīng)用領(lǐng)域及其對(duì)生命科學(xué)研究的重要意義。 細(xì)胞成像檢測(cè)系統(tǒng)的工作原理 細(xì)胞成像檢測(cè)系統(tǒng)通過使用顯微技術(shù),結(jié)合先進(jìn)的成像設(shè)備,能夠捕捉到細(xì)胞內(nèi)部和表面的細(xì)節(jié)。常見的技術(shù)包括熒光顯微鏡、共聚焦顯微鏡和電子顯微鏡等。熒光成像技術(shù)利用熒光染料標(biāo)記細(xì)胞中的特定分子或結(jié)構(gòu),能夠清晰地顯示細(xì)胞的各種動(dòng)態(tài)過程,如蛋白質(zhì)的表達(dá)、細(xì)胞的增殖與死亡等。共聚焦顯微鏡則通過激光掃描技術(shù)獲得高分辨率的細(xì)胞圖像,能夠在更高的放大倍率下獲得更細(xì)致的觀察結(jié)果。 通過這些成像技術(shù),細(xì)胞成像檢測(cè)系統(tǒng)能夠?qū)崟r(shí)捕捉細(xì)胞在不同生理狀態(tài)下的變化。比如,研究人員可以通過成像觀察癌細(xì)胞如何在不同藥物作用下發(fā)生變化,從而幫助篩選出更具的藥物。隨著分辨率和成像速度的不斷提升,現(xiàn)代細(xì)胞成像檢測(cè)系統(tǒng)能夠獲得更加精確的細(xì)胞圖像,甚至可以對(duì)活細(xì)胞進(jìn)行長時(shí)間的動(dòng)態(tài)監(jiān)測(cè)。 細(xì)胞成像檢測(cè)系統(tǒng)的應(yīng)用領(lǐng)域 細(xì)胞成像檢測(cè)系統(tǒng)在多個(gè)領(lǐng)域得到了廣泛應(yīng)用,特別是在生命科學(xué)和醫(yī)學(xué)研究中。它在細(xì)胞生物學(xué)研究中起著至關(guān)重要的作用。通過精確觀察細(xì)胞內(nèi)的分子活動(dòng),研究人員能夠揭示許多細(xì)胞內(nèi)在的生物學(xué)過程,包括蛋白質(zhì)的定位、細(xì)胞周期的調(diào)控以及細(xì)胞信號(hào)傳導(dǎo)等。通過這些研究,科學(xué)家能夠深入了解細(xì)胞的基本功能和機(jī)制。 細(xì)胞成像檢測(cè)系統(tǒng)在癌癥研究中的應(yīng)用也尤為突出。通過實(shí)時(shí)觀察腫瘤細(xì)胞的生長和擴(kuò)散過程,科學(xué)家能夠分析腫瘤細(xì)胞與正常細(xì)胞的差異,進(jìn)而尋找新的靶點(diǎn)進(jìn)行。細(xì)胞成像技術(shù)還在藥物篩選中得到了重要應(yīng)用,通過成像系統(tǒng)觀察藥物對(duì)細(xì)胞的影響,幫助篩選出更具和更安全的藥物。 細(xì)胞成像檢測(cè)系統(tǒng)的未來發(fā)展 隨著技術(shù)的不斷創(chuàng)新,細(xì)胞成像檢測(cè)系統(tǒng)在未來將更加、高效。例如,隨著超分辨率成像技術(shù)的發(fā)展,研究人員將能夠觀察到比以往更細(xì)微的細(xì)胞結(jié)構(gòu),甚至可能突破傳統(tǒng)顯微技術(shù)的分辨率極限。自動(dòng)化和人工智能技術(shù)的結(jié)合也將進(jìn)一步提高成像效率和分析準(zhǔn)確性,減少人工干預(yù),使細(xì)胞成像檢測(cè)更加便捷。 在疾病診斷方面,細(xì)胞成像檢測(cè)系統(tǒng)的未來也充滿了無限潛力。通過結(jié)合生物標(biāo)志物和成像技術(shù),研究人員可以實(shí)現(xiàn)更早期的疾病診斷,特別是癌癥、神經(jīng)退行性疾病等疾病的早期篩查,從而提高的成功率。 結(jié)論 細(xì)胞成像檢測(cè)系統(tǒng)作為生命科學(xué)研究中不可或缺的工具,其在細(xì)胞生物學(xué)、醫(yī)學(xué)研究及藥物開發(fā)等領(lǐng)域的應(yīng)用具有重要意義。隨著技術(shù)的不斷進(jìn)步,細(xì)胞成像系統(tǒng)的功能和應(yīng)用場(chǎng)景也將不斷擴(kuò)展,推動(dòng)著生命科學(xué)的發(fā)展。對(duì)于未來的醫(yī)學(xué)和生物學(xué)研究,細(xì)胞成像檢測(cè)系統(tǒng)必將繼續(xù)發(fā)揮著關(guān)鍵作用,成為揭示生命奧秘的重要手段。
26人看過