-
-
聚合物材料介電常數介質損耗測試儀
- 品牌:北京北廣精儀
- 型號: GDAT-A
- 產地:北京 海淀區
- 供應商報價:¥38000
-
北京北廣精儀儀器設備有限公司
更新時間:2025-07-31 07:26:05
-
銷售范圍售全國
入駐年限第10年
營業執照已審核
- 同類產品高頻介電常數測試儀(145件)
立即掃碼咨詢
聯系方式:400-855-8699轉8003
聯系我們時請說明在儀器網(www.189-cn.com)上看到的!
掃 碼 分 享 -
為您推薦
產品特點
- 聚合物材料介電常數介質損耗測試儀數字Q表是一款測試頻率1kHz~110MHz的多功能、多用途、多量程數字化阻抗測試儀器。它是根據串聯諧振原理,以電壓比值刻度Q值的。它能測量高頻電感器的Q值,電感量和分布電容量;電容器的電容量和損耗角。配以專用介質損耗裝置。
詳細介紹
聚合物材料介電常數介質損耗測試儀特點:
◎ 全數字處理和顯示,革除傳統Q表的電容刻度盤,實現任意頻率點測試L值和Q值。
◎ 本公司創新的自動Q值讀取技術,使測Q分辨率至0.1Q。
◎ DPLL合成發生1kHz~70MHz,測試信號。
◎ 低至20nH殘余電感,保證高頻時直讀Q值的誤差較小。
◎ TFT彩頻多參數顯示:測試頻率,電容值,電感值,Q值,ε和tanδ等。
◎ Q值量程自動/手動量程控制。
◎ 數字化Q值預置,能提高批量測試的可靠性和速度。
◎ USB通訊接口。主要技術指標:
2.1 測試信號頻率范圍:1kHz~110MHz,數字合成,可數字設置或連續調節,四位有效數顯。精度0.05%。
2.2 Q值測量范圍:5~999四位數顯,分辨率0.1Q。分100、316、999三檔,量程可自動切換。
2.3 Q值固有誤差:±5%±2% 滿刻度值。
2.4 有效電感測量范圍:20nH~5.0H,四位數顯。
2.5 電感測量誤差:≤3%±20nH
2.6 調諧電容特性:
2.6.1可調電容范圍:28pF~490 pF,四位數顯,0.1 pF分辨率。
2.6.2 精確度:±0.5% 或±1pF。
2.6.3電容測量范圍:1~450pF,四位數顯,0.1 pF分辨率,1%或1pF精度。
2.6.4殘余電感值:約20nH。
2.7 Q預置功能:Q預置范圍:5~999均可。被測件達到預置值后有“GO”顯示和蜂鳴聲提示。不合格件則顯示“NO GO”。
2.8 外形尺寸及重量:415×180×170(mm),7kg。聚合物材料介電常數介質損耗測試儀
技術參數:
1.Q值測量
a.Q值測量范圍:2~1023。
b.Q值量程分檔:30、100、300、1000、自動換檔或手動換檔。
c.標稱誤差
頻率范圍(100kHz~10MHz): 頻率范圍(10MHz~160MHz):
固有誤差:≤5%±滿度值的2% 固有誤差:≤6%±滿度值的2%
工作誤差:≤7%±滿度值的2% 工作誤差:≤8%±滿度值的2%
2.電感測量范圍:4.5nH~7.9mH
3.電容測量:1~205
主電容調節范圍:18~220pF
準確度:150pF以下±1.5pF; 150pF以上±1%
注:大于直接測量范圍的電容測量見后頁使用說明
4. 信號源頻率覆蓋范圍
頻率范圍CH1:0.1~0.999999MHz, CH2: 1~9.99999MHz,
CH3:10~99.9999MHz, CH1 :100~160MHz,
5.Q合格指示預置功能: 預置范圍:5~1000。
6.B-測試儀正常工作條件
a. 環境溫度:0℃~+40℃;
b.相對濕度:<80%;
c.電源:220V±22V,50Hz±2.5Hz。
7.其他
a.消耗功率:約25W;
b.凈重:約7kg;
c. 外型尺寸:(l×b×h)mm:380×132×280。1 測量范圍及誤差
本電橋的環境溫度為20±5℃,相對濕度為30%-80%條件下,應滿足下列表中的技術指示要求。
在Cn=100pF R4=3183.2(W)(即10K/π)時
測量項目 測量范圍 測量誤差
電容量Cx 40pF--20000pF ±0.5% Cx±2pF
介質損耗tgd 0~1 ±1.5%tgdx±0.0001
在Cn=100pF R4=318.3(W)(即1K/π)時
測量項目 測量范圍 測量誤差
電容量Cx 4pF--2000pF ±0.5% Cx±3pF
介質損耗tgd 0~0.1 ±1.5%tgdx±0.0001
2 電橋測量靈敏度
電橋在使用過程中,靈敏度直接影響電橋平衡的分辨程度,為保證測量準確度,希望電橋靈敏度達到一定的水平。通常情況下電橋靈敏度與測量電壓,標準電容量成正比。在下面的計算公式中,用戶可根據實際使用情況估算出電橋靈敏度水平,在這個水平上的電容與介質損耗因數的微小變化都能夠反應出來。
DC/C或Dtgd=Ig/UwCn(1+Rg/R4+Cn/Cx)
式中:U為測量電壓 伏特(V)
ω為角頻率 2pf=314(50Hz)
Cn標準電容器容量 皮法(pF)
Ig通用指另儀的電流5X10-10 安培(A)
Rg平衡指另儀內阻約1500 歐姆(W)
R4橋臂R4電阻值3183 歐姆(W)
Cx被測試品電容值 皮法(pF)
3 電容量及介損顯示精度:
電容量: ±0.5%×tgδx±0.0001。
介 損: ±0.5%tgdx±1×10-4
4 輔橋的技術特性:
工作電壓±12V,50Hz
輸入阻抗>1012 W
輸出阻抗>0.6 W
放大倍數>0.99
不失真跟蹤電壓 0~12V(有效值)
5 指另裝置的技術特性:
工作電壓±12V
在50Hz時電壓靈敏度不低于1X10-6V/格, 電流靈敏度不低于2X10-9A/格
二次諧波 減不小于25db
三次諧波 減不小于50db
特點:優化的測試電路設計使殘值更小◆ 高頻信號采用數碼調諧器和頻率鎖定技術◆ LED 數字讀出品質因數,手動/自動量程切換◆ 自動掃描被測件諧振點,標頻單鍵設置和鎖定,大大提高測試速度
作為新一代的通用、多用途、多量程的阻抗測試儀器,測試頻率上限達到目前國內高的160MHz。1 雙掃描技術 - 測試頻率和調諧電容的雙掃描、自動調諧搜索功能。2 雙測試要素輸入 - 測試頻率及調諧電容值皆可通過數字按鍵輸入。3 雙數碼化調諧 - 數碼化頻率調諧,數碼化電容調諧。4 自動化測量技術 -對測試件實施 Q 值、諧振點頻率和電容的自動測量。5 全參數液晶顯示 – 數字顯示主調電容、電感、 Q 值、信號源頻率、諧振指針。6 DDS 數字直接合成的信號源 -確保信源的高葆真,頻率的高精確、幅度的高穩定。7 計算機自動修正技術和測試回路優化 —使測試回路 殘余電感減至低,徹底 Q 讀數值在不同頻率時要加以修正的困惑。
標準配置:高配Q表 一只 試驗電極 一只 (c類)電感 一套(9只)電源線 一條說明書 一份合格證 一份保修卡 一份
為什么介電常數越大,絕緣能力越強?因為物質的介電常數和頻率相關,通常稱為介電系數。
介電常數又叫介質常數,介電系數或電容率,它是表示絕緣能力特性的一個系數。所以理論上來說,介電常數越大,絕緣性能就越好。
注:這個性質不是絕成立的。
對于絕緣性不太好的材料(就是說不擊穿的情況下,也可以有一定的導電性)和絕緣性很好的材料比較,這個結論是成立的。
但對于兩個絕緣體就不一定了。
介電常數反映的是材料中電子的局域(local)特性,導電性是電子的全局(global)特征.不是一回事情的。
補充:電介質經常是絕緣體。其例子包括瓷器(陶器),云母,玻璃,塑料,和各種金屬氧化物。有些液體和氣體可以作為好的電介質材料。干空氣是良好的電介質,并被用在可變電容器以及某些類型的傳輸線。蒸餾水如果保持沒有雜質的話是好的電介質,其相對介電常數約為80。
對于時變電磁場,物質的介電常數和頻率相關,通常稱為介電系數。介電常數又叫介質常數,介電系數或電容率,它是表示絕緣能力特性的一個系數介電常數,用于衡量絕緣體儲存電能的性能.它是兩塊金屬板之間以絕緣材料為介質時的電容量與同樣的兩塊板之間以空氣為介質或真空時的電容量之比。介電常數代表了電介質的極化程度,也就是對電荷的束縛能力,介電常數越大,對電荷的束縛能力越強。電容器兩極板之間填充的介質對電容的容量有影響,而同一種介質的影響是相同的,介質不同,介電常數不同
介質損耗:絕緣材料在電場作用下,由于介質電導和介質極化的滯后效應,在其內部引起的能量損耗。也叫介質損失,簡稱介損。在交變電場作用下,電介質內流過的電流相量和電壓相量之間的夾角(功率因數角Φ)的余角δ稱為介質損耗角。
損耗因子也指耗損正切,是交流電被轉化為熱能的介電損耗(耗散的能量)的量度,一般情況下都期望耗損因子低些好。
概念:
電介質在外電場作用下,其內部會有發熱現象,這說明有部分電能已轉化為熱能耗散掉,電介質在電場作用下,在單位時間內因發熱而消耗的能量稱為電介質的損耗功率,或簡稱介質損耗(diclectric loss)。介質損耗是應用于交流電場中電介質的重要品質指標之一。介質損耗不但消耗了電能,而且使元件發熱影響其正常工作。如果介電損耗較大,甚至會引起介質的過熱而絕緣破壞,所以從這種意義上講,介質損耗越小越好。
形式
各種不同形式的損耗是綜合起作用的。由于介質損耗的原因是多方面的,所以介質損耗的形式也是多種多樣的。介電損耗主要有以下形式:
1)漏導損耗
實際使用中的絕緣材料都不是完善的理想的電介質,在外電場的作用下,總有一些帶電粒子會發生移動而引起微弱的電流,這種微小電流稱為漏導電流,漏導電流流經介質時使介質發熱而損耗了電能。這種因電導而引起的介質損耗稱為“漏導損耗”。由于實阿的電介質總存在一些缺陷,或多或少存在一些帶電粒子或空位,因此介質不論在直流電場或交變電場作用下都會發生漏導損耗。
2)極化損耗
在介質發生緩慢極化時(松弛極化、空間電荷極化等),帶電粒子在電場力的影響下因克服熱運動而引起的能量損耗。
一些介質在電場極化時也會產生損耗,這種損耗一般稱極化損耗。位移極化從建立極化到其穩定所需時間很短(約為10-16~10-12s),這在無線電頻率(5×1012Hz 以下)范圍均可認為是極短的,因此基本上不消耗能量。其他緩慢極化(例如松弛極化、空間電荷極化等)在外電場作用下,需經過較長時間(10-10s或更長)才達到穩定狀態,因此會引起能量的損耗。
若外加頻率較低,介質中所有的極化都能完全跟上外電場變化,則不產生極化損耗。若外加頻率較高時,介質中的極化跟不上外電場變化,于是產生極化損耗。 [2]
電離損耗
電離損耗(又稱游離損耗)是由氣體引起的,含有氣孔的固體介質在外加電場強度超過氣孔氣體電離所需要的電場強度時,由于氣體的電離吸收能量而造成指耗,這種損耗稱為電離損耗。
結構損耗
在高頻電場和低溫下,有一類與介質內鄰結構的緊密度密切相關的介質損耗稱為結構損耗。這類損耗與溫度關系不大,耗功隨頻率升高而增大。
試驗表明結構緊密的晶體成玻璃體的結構損耗都很小,但是當某此原因(如雜質的摻入、試樣經淬火急冷的熱處理等)使它的內部結構松散后。其結構耗就會大大升高。
宏觀結構不均勾性的介質損耗
工程介質材料大多數是不均勻介質。例如陶瓷材料就是如此,它通常包含有晶相、玻璃相和氣相,各相在介質中是統計分布口。由于各相的介電性不同,有可能在兩相間積聚了較多的自由電荷使介質的電場分布不均勻,造成局部有較高的電場強度而引起了較高的損耗。但作為電介質整體來看,整個電介質的介質損耗必然介于損耗大的一相和損耗小的一相之間。
表征:
電介質在恒定電場作用下,介質損耗的功率為
W=U2/R=(Ed)2S/ρd=σE2Sd
定義單位體積的介質損耗為介質損耗率為
ω=σE2
在交變電場作用下,電位移D與電場強度E均變為復數矢量,此時介電常數也變成復數,其虛部就表示了電介質中能量損耗的大小。
D,E,J之間的相位關系圖
D,E,J之間的相位關系圖
如圖所示,從電路觀點來看,電介質中的電流密度為
J=dD/dt=d(εE)/dt=Jτ+iJe
式中Jτ與E同相位。稱為有功電流密度,導致能量損耗;Je,相比較E超前90°,稱為無功電流密度。
定義
tanδ=Jτ/Je=ε〞/εˊ
式中,δ稱為損耗角,tanδ稱為損耗角正切值。
損耗角正切表示為獲得給定的存儲電荷要消耗的能量的大小,是電介質作為絕緣材料使用時的重要評價參數。為了減少介質損耗,希望材料具有較小的介電常數和更小的損耗角正切。損耗因素的倒數Q=(tanδ)-1在高頻絕緣應用條件下稱為電介質的品質因素,希望它的值要高。
工程材料:離子晶體的損耗,離子晶體的介質損耗與其結構的緊密程度有關。
緊密結構的晶體離子都排列很有規則,鍵強度比較大,如α-Al2O3、鎂橄欖石晶體等,在外電場作用下很難發生離子松弛極化,只有電子式和離子式的位移極化,所以無極化損耗,僅有的一點損耗是由漏導引起的(包括本質電導和少量雜質引起的雜質電導)。這類晶體的介質損耗功率與頻率無關,損耗角正切隨頻率的升高而降低。因此,以這類晶體為主晶相的陶瓷往往用在高頻場合。如剛玉瓷、滑石瓷、金紅石瓷、鎂橄欖石瓷等
結構松散的離子晶體,如莫來石(3Al2O3·2SiO2)、董青石(2MgO·2Al2O3·5SiO2)等,其內部有較大的空隙或晶格畸變,含有缺陷和較多的雜質,離子的活動范圍擴大。在外電場作用下,晶體中的弱聯系離子有可能貫穿電極運動,產生電導打耗。弱聯系離子也可能在一定范圍內來回運動,形成熱離子松弛,出現極化損耗。所以這類晶體的介質損耗較大,由這類品體作主晶相的陶瓷材料不適用于高頻,只能應用于低頻場合。
玻璃的損耗
復雜玻璃中的介質損耗主要包括三個部分:電導耗、松弛損耗和結構損耗。哪一種損耗占優勢,取決于外界因素溫度和電場頻率。高頻和高溫下,電導損耗占優勢:在高頻下,主要的是由弱聯系離子在有限范圍內移動造成的松弛損耗:在高頻和低溫下,主要是結構損耗,其損耗機理目前還不清楚,可能與結構的緊密程度有關。般來說,簡單玻璃的損耗是很小的,這是因為簡單玻璃中的“分子”接近規則的排列,結構緊密,沒有弱聯系的松弛離子。在純玻璃中加人堿金屬化物后。介質損耗大大增加,并且隨著加人量的增大按指數規律增大。這是因為堿性氧化物進人玻璃的點陣結構后,使離子所在處點陣受到破壞,結構變得松散,離子活動性增大,造成電導損耗和松弛損耗增加。
陶瓷材料的損耗
陶瓷材料的介質損耗主要來源于電導損耗、松弛質點的極化損耗和結構損耗。此外,表面氣孔吸附水分、油污及灰塵等造成的表面電導也會引起較大的損耗。
在結構緊密的陶瓷中,介質損耗主要來源于玻璃相。為了改善某些陶瓷的工藝性能,往往在配方中引人此易熔物質(如黏土),形成玻璃相,這樣就使損耗增大。如滑石瓷、尖晶石瓷隨黏土含量增大,介質損耗也增大。因面一般高頻瓷,如氧化鋁瓷、金紅石等很少含有玻璃相。大多數電陶瓷的離子松弛極化損耗較大,主要的原因是:主晶相結構松散,生成了缺固濟體、多品型轉變等。 [3]
高分子材料的損耗
高分子聚合物電介質按單體單元偶極矩的大小可分為極性和非極性兩類。一般地,偶極矩在0~0.5D(德拜)范圍內的是非極性高聚物;偶極矩在0.5D以上的是極性高聚物。非極性高聚物具有較低的介電常數和介質損耗,其介電常數約為2,介質損耗小于10-4;極性高聚物則具有較高的介電常數和介質損耗,并且極性愈大,這兩個值愈高。
高聚物的交聯通常能阻礙極性基團的取向,因此熱固性高聚物的介電常數和介質損耗均隨交聯度的提高而下降。酚醛樹脂就是典型的例子,雖然這種高聚物的極性很強,但只要固化比較完全,它的介質損耗就不高。相反,支化使分子鏈間作用力減弱,分子鏈活動能力增強,介電常數和介質損耗均增大。
高聚物的凝聚態結構及力學狀態對介電性景響也很大。結品能抑制鏈段上偶極矩的取向極化,因此高聚物的介質損耗隨結晶度升高而下降。當高聚物結晶度大于70%時,鏈段上的偶極的極化有時完全被抑制,介電性能可降至低值,同樣的道理,非晶態高聚物在玻璃態下比在高彈態下具有更低的介質損耗。此外,高聚物中的增塑利、雜質等對介電性能也有很大景響。
介質損耗(dielectric loss )指的是絕緣材料在電場作用下,由于介質電導和介質極化的滯后效應,在其內部引起的能量損耗。也叫介質損失,簡稱介損。
介質損耗因數(dielectric loss factor)指的是衡量介質損耗程度的參數?!疽罁藴省縂B/T 16491、GB/T 1040、GB/T 8808、GB/T 13022、GB/T 2790、GB/T 2791、GB/T 2792、GB/T 16825、GB/T 17200、GB/T 3923.1、GB/T 528、GB/T 2611、GB/T 6344、GB/T 20310、GB/T 3690、GB/T 4944、GB/T 3686、GB/T 529、GB/T 6344、GB/T 10654、HG/T 2580、JC/T 777、QB/T 2171、HG/T 2538、CNS 11888、JIS K6854、PSTC-7、ISO 37、AS 1180.2、BS EN 1979、BSEN ISO 1421、BS EN ISO 1798、BS EN ISO 9163、DIN EN ISO 1798、GOST 18299、DIN 53357、ISO 2285、ISO 34-1、ISO 34-2、BS 903、BS 5131、DIN EN 12803、DIN EN 12995、DIN53507-A、DIN53339、ASTM D3574、ASTM D6644、ASTM D5035、ASTM D2061、ASTM D1445、ASTM D2290、ASTM D412、ASTM D3759/D3759M
相關產品